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9. Coverings

Chef’s table

This problem set is totally about playing with covering maps. There are some examples
to work out (specifically problems 9.1-9.2-9.3) and a few basic facts to prove (problems
9.4-9.5-9.6-9.7-9.8). Among these exercises (which are meant to be quite fast to solve,
and basically only build on the very definition of covering map) I would like to stress the
importance of Problem 9.7, which gives us an excuse to introduce the definition of discrete
subset in a topological space (have a look at the note below and make sure you can follow
the remarks in there). The fact that any fiber of a covering map is indeed a discrete
subset is crucially employed in the proof of the monodromy theorem (Lecture 19) and, in
a special case, already in computing the fundamental group of S1 (Lecture 18). Problem
9.9 is a little lemma which extends the analogous statement for paths (i.e. that ‘paths are
evenly covered’), and is used in the proof of existence of lifts for homotopies. Last but
not least, the challenge problem of this week is more accessible than other ones and is in
fact an excellent way of testing your understanding of the ideas we have introduced in the
last two weeks. This time I suggest that you all give it a look and try to think about it,
as it may really clarify what Algebraic Topology is about.

9.1. Cover the circle L. Let p : R→ S1 be the map defined as

p(t) := (cos(2πt), sin(2πt)).

Show that p is a covering map (of infinite degree).

9.2. Cover the circle, reloaded L. Prove that p : S1 → S1 given by p(z) := zn is a
degree n covering map for any n ≥ 1.

Note: Here we regard S1 ⊆ C as unit circle.

9.3. Cover the punctured plane L. Prove that p : C∗ → C∗ given by p(z) := zn is a
degree n covering map for any n ≥ 1.

Note: Here we have denoted C∗ = C \ {0}.

9.4. Two criteria for covering maps L. Let X̃,X be topological spaces and let
p : X̃ → X be a continuous function. Then:

(i) p is a covering map if and only if there is a cover of X consisting of evenly covered
open sets;

(ii) p is a covering map if and only if there is a basis of X consisting of evenly covered
open sets.

Deduce that a covering map is open.
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9.5. Restrictions of covering maps L. Consider a covering map p : X̃ → X and
a subspace A ⊆ X. Defining Ã := p−1(A), show that the restriction p|Ã : Ã → A is a
covering map.

9.6. Composition of covering maps L. Let X, Y, Z be topological spaces, and let
p : X → Y and q : Y → Z be covering maps. Assume that q−1(z) is a finite set for all
z ∈ Z. Show that q ◦ p : X → Z is a covering map.

9.7. Fibers are discrete 3. Let p : X̃ → X be a covering map, with X a Hausdorff
space. Show that for any x ∈ X the fiber p−1(x) is a discrete subset of X̃. Deduce that,
if X̃ is compact and X is connected, then the covering in question has finite degree.

Note: We say that a subset A of a topological space X is discrete if for all x ∈ X there
exists a neighborhood U = U(x) such that (U \ {x}) ∩ A = ∅. Observe that:

• If A ⊆ X is a discrete subset, then the induced topology on A as a subspace of X is
discrete.

• The converse of the previous assertion is false, for instance A := {1/n : n ∈ N∗}
inherits the discrete topology as a subspace of R (the standard real line) but it is not
a discrete subset.

Note that, as a result of the first item above, a continuous map f : Y → X with Y
connected, such that f(Y ) ⊆ A with A discrete is actually constant.

9.8. When the fibers are finite 3. Let p : X̃ → X be a covering map with p−1(x)
finite and non-empty for all x ∈ X. Show that X̃ is compact Hausdorff if and only if X is
compact Hausdorff.

9.9. Homotopies are evenly covered 3. Let p : X → Y be a covering map, and
let F : [0, 1]× [0, 1]→ Y be a homotopy between two paths. For each y ∈ Y , let Uy be
an evenly covered neighborhood of y. Show that there is n > 0 such that, subdividing
[0, 1]× [0, 1] is squares of side length 1/n, we obtained that the image under F of every
such sub-square is contained in Uy for some y ∈ Y .

9.10. Complements of circles and lines m. Let γ := {(x, y, z) ∈ R3 : x2 + y2 =
1, z = 0} and let r := {(x, y, z) ∈ R3 : x = y = 0}. Prove that the spaces R3 \ γ and
R3 \ (γ ∪ r) are not homeomorphic.
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9. Solutions

Solution of 9.1: Let (x, y) be a point of S1 and let t ∈ R be such that x = cos(2πt) and
y = sin(2πt), i.e. p(t) = (x, y). It is a well-known fact that p−1((x, y)) = {t+ n : n ∈ Z}.
Let ε = 1/10, we claim that the open set U := p((t− ε, t+ ε)) = {(cos(2πs), sin(2πs)) :
s ∈ (t− ε, t+ ε)} is an evenly covered open neighborhood of (x, y), which concludes the
proof by arbitrariness of (x, y).

It is clear that p−1(U) = ⋃
n∈Z Vn, where Vn := (t+n− ε, t+n+ ε). By the choice of ε, all

the intervals Vn are disjoint. Fix n ∈ Z, we want to show that p|Vn is a homeomorphism
between Vn and U . Note that p(s + n) = p(s) for all s ∈ V0 and n ∈ Z. Hence it is
sufficient to prove that p|V0 : V0 → U is a homeomorphism.

Actually it is convenient to rather prove that p|V0
: V0 → U is a homeomorphism, which is

a bit easier and from which follows that p|V0 is a homeomorphism with its image. It is
clear that p|V0

is a continuous bijection. Moreover we now prove that p|V0
is closed, which

concludes the proof. Consider a closed subset C ⊆ V0, then C is compact in R (since V0
is compact in R). As a result, p(C) is compact as well, thus closed since S1 is Hausdorff.

Solution of 9.2: First note that the nth roots of unity, i.e. the solutions of zn = 1, are
ξk := e2πik/n = cos(2πk/n) + i sin(2πk/n) for k = 1, . . . , n. Hence, given any z = eiθ ∈ S1,
we have that

p−1(z) = {eiθ/nξ1, e
iθ/nξ2, . . . , e

iθ/nξn}.

Now fix any z0 = eiθ0 ∈ S1, we claim that U := {eiθ : |θ − θ0| < π/2} ⊆ S1 is an evenly
covered open neighborhood of z0. Thanks to the observation above, p−1(U) = ⋃n

k=1 Vk,
where

Vk := {eiθ/nξk : |θ − θ0| < π/2}.

Note that Vk∩Vh = ∅ for all k 6= h. Indeed, assume by contradiction that eiθ/nξk = eiθ
′/nξh

for some θ, θ′ ∈ (θ0 − π/2, θ0 + π/2) and k 6= h, then

θ

n
+ 2πk

n
≡ θ′

n
+ 2πh

n
(mod 2π)

⇐⇒ θ − θ′ ≡ 2π(h− k) (mod 2πn).

However |θ − θ′| < π < 2π|h − k| < 2πn, which is in contradiction with the previous
equality modulo 2πn. Hence {Vk}k=1,...,n are pairwise disjoint. Moreover p|Vk

: Vk → U is
easily a continuous bijection for every k = 1, . . . , n. Finally note that (p|Vk

)−1 : U → Vk is
given by

(p|Vk
)−1(eiθ) = eiθ/nξk

for all eiθ ∈ U , i.e. for |θ − θ0| < π/2. Hence (p|Vk
)−1 is continuous as well, which proves

that p|Vk
: Vk → U is a homeomorphism for all k = 1, . . . , n as we wanted.

Solution of 9.3: The map p : C∗ → C∗ is holomorphic with complex derivative p′(z) =
nzn−1. Now recall that the determinant of the Jacobian matrix of p (seen as a function
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from R2 \{0, 0} to itself) in a point z is equal to |p′(z)| = n|z|n−1, which is always different
from zero in C∗. Hence, we can apply the inverse function theorem to obtain that for all
z ∈ C∗ there exists an open neighborhood Vz ⊆ C∗ of z such that p|Vz : Vz → p(Vz) ⊆ C∗
is a homeomorphism.

Now consider any point w ∈ C∗, then p−1(w) = {z1, . . . , zn} consists of n points (if we
write w = reiθ, then p−1(w) = {r1/neiθ/nξ1, . . . , r

1/neiθ/nξn}, where ξ1, . . . , ξn are the nth
roots of unity defined in Problem 9.2). Hence, p is a local homeomorphism with fibers of
finite cardinatilty. Therefore p is a covering map since C∗ is connected (see Lecture 18).

Remark. As we observed above, given any w = reiθ ∈ C∗, we have that

p−1(w) = {r1/neiθ/nξ1, . . . , r
1/neiθ/nξn}.

Hence you can see that p winds only with respect to the variable θ. This makes an
approach very similar to the one in Problem 9.2 working also in this case and providing
a different proof from the one above. Indeed, it is possible to show in the same way as
in the previous exercise that, given any point w = r0e

iθ0 ∈ C∗, the set U := {reiθ : r >
0, |θ − θ0| < π/2} ⊆ C∗ is an evenly covered open neighborhood of w.

Solution of 9.4: First observe that a basis B of X is also a cover. Indeed the set X
is open (for every topology on X), hence it can be written as union of elements in B.
Therefore, in order to prove both items, it is sufficient to prove that:

• If there is a cover of X consisting of evenly covered open sets, then p is a covering
map.

• If p is a covering map, then there is a basis of X consisting of evenly covered open
sets.

The first of the two statements is trivial. Indeed, if there is a cover O of X consisting
of evenly covered open sets, then for all x ∈ X there exists an evenly covered open
neighborhood Ux ∈ O of x. However, this is exactly what is needed for p to be a covering
map.

Hence let us prove the second statement. Consider the following family of open sets

B := {B ⊆ X : B is an evenly covered open set}.

We claim that B is a basis for the topology of X, which proves what we want. Consider
any open subset O of X and pick a point x ∈ O. Since p is a covering map, there exists
B ∈ B that contains x. Now observe that B ∩O is an open neighborhood of x contained
in O. Moreover B ∩ O is evenly covered, since it is a subset of an evenly covered set.
Hence, B ∩O ∈ B and x ∈ B ∩O ⊆ O, which proves that B is a basis, as we wanted.

Finally, we prove that every covering map p : X̃ → X is open. Let U ⊆ X̃ be an open
set, we want to show that p(U) is open in X. By the previous part of the exercise, there
exists a cover O of X consisting of evenly covered open sets. Hence, given any O ∈ O, we
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have that p−1(O) = ⋃
i∈I Vi, where Vi are disjoint open sets in X̃ such that p|Vi

: Vi → O
is a homeomorphism. As a result, we obtain that

p(U) ∩O = p(U ∩ (∪i∈IVi)) =
⋃
i∈I
p(U ∩ Vi)

is an open subset of X, since it is union of the open sets p(U ∩ Vi) for i ∈ I. Indeed,
U ∩ Vi ⊆ X̃ is open for all i ∈ I and p|Vi

maps it homeomorphically to p(U ∩ Vi), which is
thus open as well. Therefore, we conclude that

p(U) =
⋃
O∈O

(p(U) ∩O)

is open, as we wanted.

Solution of 9.5: Fix any point x ∈ A. Since p : X̃ → X is a covering map, there exists
an evenly covered open neighborhood U of x in X. Namely p−1(U) = ⋃

i∈I Vi, where Vi
are disjoint open sets and p|Vi

: Vi → U is a homeomorphism for all i ∈ I.

We claim that UA := U ∩A is an evenly covered open neighborhood of x in A with respect
to the map p|Ã : Ã → A. First observe that (p|Ã)−1(UA) = p−1(UA) = ∪i∈IV A

i , where
V A
i := Vi ∩ Ã are pairwise disjoint subsets of Ã. Moreover p|V A

i
: V A

i → p(V A
i ) = UA maps

homeomorphically V A
i into UA, since it is the restriction to V A

i of the homeomorphism
p|Vi

: Vi → U . This concludes the proof by arbitrariness of x ∈ A.

Solution of 9.6: Let z ∈ Z, let y1, . . . , yn be the preimages of z with respect to the map
q (by assumption they are in finite number), and let U be an evenly covered neighborhood
of z (with respect to the cover q : Y → Z). For all i = 1, . . . , n, let Ui be an evenly covered
open neighborhood of yi (with respect to the cover p : X → Y ) and define Vi := Ui∩q−1(U).
Note that, for every i = 1, . . . , n, we have that:

• Vi is an open neighborhood of yi;

• q|Vi
is a homeomorphism between Vi and q(Vi);

• Vi is an evenly covered neighborhood for p : X → Y .

Now, we can define W ⊆ Z as
W :=

n⋂
i=1

q(Vi).

Since n is finite, W is an open subset of Z. Moreover, since W is contained in an evenly
covered neighborhood of z (with respect to q : Y → Z), we have that W is an evenly
covered neighborhood of z as well. On the other hand, since q−1(W ) ⊆ ⋃ni=1 Vi, we have
that q−1(W ) = ⋃n

i=1 Wi, where Wi is contained in Vi for all i = 1, . . . , n, thus Wi are
disjoint evenly covered neighborhoods of yi (with respect to p).

We claim that W is an evenly covered open neighborhood of z with respect to q ◦ p. Note
that (q◦p)−1(V ) = ⋃n

i=1 p
−1(Wi), where p−1(Wi) are pairwise disjoint (sinceWi are pairwise

disjoint). Moreover, since everyWi is an evenly covered neighborhood for the covering map
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p, we have that p−1(Wi) = ⋃
j∈Ji

T ji , where T ij ⊆ X are disjoint subsets and p|T j
i

: T ji → Wi

is a homeomorphism. As a result we have that (q ◦ p)|T j
i

= q|Wi
◦ p|T j

i
: T ji → W is a

homeomorphism, because it is the composition of two homeomorphism. Thus, W is an
evenly covered neighborhood of z ∈ Z with respect to q ◦ p. Since z ∈ Z was arbitrary,
this concludes the proof.

Solution of 9.7: Fix any x ∈ X. We want to show that for all y ∈ X̃ there exists an
open neighborhood U of y such that (U \ {y}) ∩ p−1(x) = ∅. We have to distinguish two
cases:

• If y ∈ p−1(x), pick an evenly covered open neighborhood V of x. Then p−1(V ) =⋃
i∈I Ui, where Ui ⊆ X̃ are disjoint sets mapped homeomorphically to V . In

particular, the sets Ui are open and for all i ∈ I there is a unique yi ∈ p−1(x) ∩ Ui.
Hence we can define U := Ui, where y ∈ Ui, which is an open neighborhood of y
such that (U \ {y}) ∩ p−1(x) = ∅.

• If p(y) 6= x, consider an open neighborhood V of p(y) that does not contain x,
which exists because X is Hausdorff (in fact it is sufficient to ask X to be T1). Up
to restriction to a smaller neighborhood, we can assume that V is evenly covered.
Then observe that U := p−1(V ) is an open neighborhood of y that does not contain
any element of p−1(x) (since it is union of sets mapped homeomorphically to V and
x 6∈ V ). In particular we have that (U \ {y}) ∩ p−1(x) = ∅.

Now assume that X̃ is compact and consider any point x ∈ X. In the previous part of
the exercise we proved that p−1(x) is a discrete subset of X̃. However, any discrete subset
of a compact topological space is finite, hence p−1(x) is finite for all x ∈ X. Note that the
hypothesis on the connectivity of X is needed only to have that the degree is well-defined.

Thus we conclude by showing that any discrete subset of a compact topological space
is finite. Assume by contradiction that there exists an infinite discrete subset A of a
compact topological space Y . By definition of discrete subset, every y ∈ Y admits an
open neighborhood Uy such that (Uy \ {y})∩A = ∅. By compactness of Y , the open cover
{Uy}y∈Y admits a finite subcover {Uy1 , . . . , Uyn}. As a result, we obtain that

∅ = ((Uy1 \ {y1}) ∪ . . . ∪ (Uyn \ {yn})) ∩ A ⊇ ((Uy1 ∪ . . . ∪ Uyn) \ {y1, . . . , yn}) ∩ A,

which implies that A ⊆ {y1, . . . , yn} is finite.

Solution of 9.8: First assume that X̃ is compact Hausdorff. Then X = p(X̃) is compact
since it is the image of a compact set through a continuous function. Now consider any
couple of distinct points x, y ∈ X. Let p−1(x) = {x̃1, . . . , x̃d} and p−1(y) = {ỹ1, . . . , ỹd}
be the preimages of x, y, where d is the (finite) degree of the cover. Then, since X̃ is
Hausdorff, there exist pairwise disjoint open neighborhoods Ũ1 3 x̃1, . . . , Ũd 3 x̃d and
Ṽ1 3 ỹ1, . . . , Ṽd 3 ỹd, namely Ũi ∩ Ṽj = ∅, Ũi ∩ Ũj = ∅ and Ṽi ∩ Ṽj = ∅ for all 1 ≤ i, j ≤ d.
Moreover, up to taking these neighborhoods Ũ1, . . . , Ũd, Ṽ1, . . . Ṽd possibly smaller, we can
assume that p|Ũi

: Ũi → U and p|Ṽi
: Ṽi → V are homeomorphisms for all i = 1, . . . , d, for

some evenly covered open neighborhoods U , V of x, y respectively. We claim that U and

assignment: April 27, 2020 due: May 4, 2020 6/8



d-math
Prof. A. Carlotto

Topology
Solutions - Problem set 9

ETH Zürich
FS 2020

V are disjoint. Assume that there exists a point z ∈ U ∩ V , then z has a preimage in each
of the open subsets U1, . . . , Ud, V1, . . . , Vd, thus has at least 2d preimages (because these
subsets are pairwise disjoint). This contradicts the fact that the degree of the cover is d
and thus proves that X is Hausdorff, as desired.

Viceversa, let us assume that X is compact Hausdorff. Pick any couple of distinct points
x̃, ỹ ∈ X̃. Consider x = p(x̃) and y = p(ỹ). If x = y, consider an evenly covered open
neighborhood Ux of x, then p−1(Ux) is the disjoint union of sets homeomorphic to Ux.
In particular, there exist Vx̃, Vỹ ⊆ p−1(Ux) disjoint open sets homeomorphic to Ux such
that x̃ ∈ Vx̃, ỹ ∈ Vỹ. Now consider the case in which x 6= y, then there exist disjoint
open neighborhoods Ux, Uy of x and y respectively. Up to intersecting them with evenly
covered open neighborhoods of x and y, we can assume that Ux and Uy are evenly covered
theirselves. Hence p−1(Ux) and p−1(Uy) are disjoint open neighborhoods of x̃ and ỹ,
respectively. This concludes the proof that X̃ is Hausdorff.

To prove that X̃ is compact, we will need the following basic lemma (cf. Lecture 9 and
Lecture 10).

Lemma. Let X be a compact Hausdorff space, then X is regular, i.e. for any x ∈ X and
any closed subset C ⊆ X \ {x} there exist U, V disjoint open neighborhoods of x and C
respectively.

Proof. Since X is Hausdorff, for every y ∈ C there exist Uy, Vy disjoint open neighborhoods
of x and y, respectively. Moreover note that C is compact, because it is a closed subset of
a compact Hausdorff space. Hence the open cover {Vy}y∈C of C admits a finite subcover
{Vy1 , . . . , Vyn}. Hence we can define the open subsets U := ⋂n

k=1 Uyk
and V := ⋃n

k=1 Vyk
.

Observe that U and V are disjoint and they contain x and C respectively, which proves
that X is regular.

For every point x ∈ X, let us consider an evenly covered open neighborhood Ux of x.
Then, by the lemma above applied to x and X \ Ux, we find an open neighborhood Vx of
x such that Vx ⊆ Vx ⊆ Ux. Note that Vx and Vx are evenly covered sets as well. Since
X is compact, the open cover {Vx}x∈X admits a finite subcover {Vx1 , . . . , Vxn}n∈N. Now
observe that p−1(Vxi

) is compact for all i = 1, . . . , n, because it is a disjoint finite union
of sets homeomorphic to Vxi

, which is compact. Moreover, it holds that

X̃ ⊇
n⋃
i=1

p−1(Vxi
) ⊇

n⋃
i=1

p−1(Vxi
) = p−1

(
n⋃
i=1

Vxi

)
= p−1(X) = X̃.

Hence all the containments are equalities and in particular X̃ is the finite union of the
compact sets p−1(Vxi

) for i = 1, . . . , n, thus it is compact as well.

Solution of 9.9: Observe that O = {F−1(Uy)}y∈Y is an open cover of [0, 1]× [0, 1], which
is a compact metric space. Thus the cover O admits a Lebesgue number, i.e. there exists
ε > 0 such that for each x ∈ [0, 1]× [0, 1] there is O ⊆ O with Bε(x) ⊆ O.
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Now pick n > 0 such that 2/n < ε. We claim that subdividing the square in sub-squares
of side length 1/n provides the result. Let Q be such a sub-square and let x be a point in
Q. By definition of Lebesgue number, there exists O ∈ O such that Bε(x) ⊆ O. By the
choice of n, this imiplies that Q ⊆ Bε(x) ⊆ O. Since O = F−1(Uy) for some y ∈ Y , we
have that F (Q) ⊆ Uy, which is the desired result.

Solution of 9.10: m
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