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Definitions

The argument of a non-zero complex number is only defined modulo 2π. A
convenient way to describe mathematically this relationship is to associate to
any such number the set of admissible values of its argument:

Definition – The Argument Function. The set-valued (or multi-valued)
function Arg, defined on C∗ by

Arg z =
{
θ ∈ R

∣∣∣∣ eiθ = z

|z|

}
,

is called the argument function.

If we need a classic single-valued function instead, we have for example:

Definition – Principal Value of the Argument. The principal value of the
argument is the unique continuous function

arg : C \ R− → R

such that
arg 1 = 0
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which is a choice of the argument on its domain:

∀ z ∈ C \ R−, arg z ∈ Arg z.

Proof (existence and uniqueness). Define arg on C \ R− → R by:

arg(x+ iy) =

∣∣∣∣∣∣
arctan y/x if x > 0,

+π/2− arctan x/y if y > 0,
−π/2− arctan x/y if y < 0.

This definition is non-ambiguous: if x > 0 and y > 0, we have

arctan x/y + arctan y/x = π/2

and a similar equality holds when x > 0 and y < 0. As each of the three
expressions used to define arg has an open domain and is continuous, the function
itself is continuous. It is a choice of the argument thanks to the definition of
arctan: for example, if x > 0, with θ = arg(x+ iy), we have

sin θ
cos θ = tan θ = tan(arctan y/x) = y

x
,

hence, as cos θ > 0 and x > 0, there is a λ > 0 such that

x+ iy = λ(cos θ + i sin θ) = λeiθ,

This equation yields arg x+ iy ∈ Arg x+ iy. The proof for the half-planes y > 0
and y < 0 is similar.

If f is another continuous choice of the argument on C \R− such that f(1) = 0,
the image of C \R− by the difference f − arg is a subset of 2πZ that contains 0,
and it’s also path-connected as the image of a path-connected set by a continuous
function. Consequently, it is the singleton {0}: f and arg are equal. �

We cannot avoid the introduction of a cut in the complex plane when we search
for a continuous choice of the argument: there is no continuous choice of the
argument on C∗. However, for a continuous choice of the argument along a path
of C∗, there is no such restriction:

The following theorem is a special case of the path lifting property (in the context
of covering spaces; refer to (Hatcher 2002) for details).

Theorem – Continuous Choice of the Argument. Let a ∈ C and γ be a
path of C \ {a}. Let θ0 ∈ R be a value of the argument of γ(0)− a:

θ0 ∈ Arg(γ(0)− a).

There is a unique continous function θ : [0, 1] 7→ R such that θ(0) = θ0 which is
a choice of z 7→ Arg(z − a) on γ:

∀ t ∈ [0, 1], θ(t) ∈ Arg(γ(t)− a).
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Proof. Let (x(t), y(t)) be the cartesian coordinates of γ(t) in the system with
origin a and basis (eiθ0 , ieiθ0). As long as x(t) > 0, the function

t 7→ θ0 + arg(x(t) + iy(t))

is a continuous choice of the argument of γ(t)− a. Let d be the distance between
a and γ([0, 1]) and let n ∈ N such that

|t− s| ≤ 2−n ⇒ |γ(t)− γ(s)| < d.

The condition x(t) > 0 is ensured for any t in [0, 2−n]. This construction of a
continuous choice may be iterated locally on every interval [k2−n, (k + 1)2−n]
with a new coordinate system to provide a global continuous choice of the
argument on [0, 1].

The uniqueness of a continuous choice is a consequence of the intermediate value
theorem: if we assume that there are two such functions θ1 and θ2 with the same
initial value θ0, as θ1(0)− θ2(0) = 0, if θ1(t)− θ2(t) 6= 0 for some t ∈ [0, 1], then
either |θ1(t)− θ2(t)| < π, or there is a τ ∈ ]0, t[ such that θ1(τ)− θ2(τ) 6= 0 and
|θ1(τ)− θ2(τ)| < π. In any case, there is a contradiction since all values of the
argument differ of a multiple of 2π. �

Definition – Variation of the Argument. Let a ∈ C and γ be a path of
C \ {a}. The variation of z 7→ Arg(z − a) on γ is defined as

[z 7→ Arg(z − a)]γ = θ(1)− θ(0)

where θ is a continous choice of z 7→ Arg(z − a) on γ.

Proof (unambiguous definition). If θ1 and θ2 are two continuous choices of
z 7→ Arg(z − a) on γ, for any t ∈ [0, 1], they differ of a multiple of 2π. As the
function θ1 − θ2 is continuous, by the intermediate value theorem, it is constant.
Hence

(θ1 − θ2)(1) = (θ1 − θ2)(0),
and θ1(1)− θ1(0) = θ2(1)− θ2(0). �

Definition – Winding Number / Index. Let a ∈ C and γ be a closed path
of C \ {a}. The winding number – or index – of γ around a is the integer

ind(γ, a) = 1
2π [z 7→ Arg(z − a)]γ .

Proof – The Winding Number is an Integer. Let θ be a continuous choice
function of z 7→ Arg(z − a) on γ; as the path γ is closed, θ(0) and θ(1), which
are values of the argument of γ(0)− a = γ(1)− a, are equal modulo 2π, hence
(θ(1)− θ(0))/2π is an integer. �

Definition – Path Exterior & Interior. The exterior and interior of a
closed path γ are the subsets of the complex plane defined by

Ext γ = {z ∈ C \ γ([0, 1]) | ind(γ, z) = 0}.

3



and

Int γ = C \ (γ([0, 1]) ∪ Ext γ) = {z ∈ C \ γ([0, 1]) | ind(γ, z) 6= 0}.

Properties

Theorem – The Winding Number is Locally Constant. Let a ∈ C and
γ be a closed path of C \ {a}. There is a ε > 0 such that, for any b ∈ C and any
closed path β, if

|b− a| < ε and (∀ t ∈ [0, 1], |β(t)− γ(t)| < ε)

then β is a path of C \ {b} and

ind(γ, a) = ind(β, b).

Proof. Let ε = d(a, γ([0, 1]))/2. If |b−a| < ε and for any t ∈ [0, 1], |γ(t)−β(t)| <
ε, then clearly b ∈ C \ β([0, 1]). Additionally, for any t ∈ [0, 1] there are values
θ1 of Arg(γ(t) − a) and θ2 of Arg(β(t) − b) such that |θ1 − θ2| < π/2. If we
select some values θ1,0 of Arg(γ(0) − a) and θ2,0 of Arg(β(0) − b) such that
|θ1,0 − θ2,0| < π/2, then the corresponding continuous choices θ1 et θ2 satisfy
|θ1(t)− θ2(t)| < π/2 for any t ∈ [0, 1](1). Consequently

|ind(γ, a)− ind(β, b)| =
∣∣∣∣θ1(1)− θ1(0)

2π − θ2(1)− θ2(0)
2π

∣∣∣∣ < 1
2 .

As both winding numbers are integers, they are equal. �

Corollary – The Winding Number is Constant on Components. Let γ
be a closed path. The function

z ∈ C \ γ([0, 1]) 7→ ind(γ, z)

is constant on each component of C \ γ([0, 1]). If additionally the component is
unbounded, the value of the winding number is zero.

Proof. The mapping z 7→ ind(γ, z) is locally constant – and hence constant –
on every connected component of C \ γ([0, 1]). If a belongs to some unbounded
component of this set, there is a b in the same component such that |b| > r =
maxt∈[0,1] |γ(t)|. It is possible to connect b to any point c such that |c| = r by a
circular path in C \ γ([0, 1]), thus we may assume that b ∈ R−. The function

θ : t ∈ [0, 1] 7→ arg(γ(t)− b)
1Otherwise, by the intermediate value theorem, we could find some t ∈ ]0, 1] such that

|θ1(t)− θ2(t)| = π/2, but then, for every value θ1,t of Arg(γ(t)− a) and θ2,t of Arg(β(t)− b),
we would have

θ1,t − θ2,t = θ1(t)− θ2(t) + 2πk
for some k ∈ Z. Therefore, the choice of θ1,t and θ2,t such that |θ1,t − θ2,t| < π/2 would be
impossible.
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is a continuous choice of z 7→ Arg(z − b) along γ and it satisfies

∀ t ∈ [0, 1], |θ(t)| = arctan Im(γ(t)− b)
Re(γ(t)− b) < arctan r

|b| − r
<
π

2 .

As γ is a closed path, θ(0) and θ(1) – which are equal modulo 2π – are actually
equal and

ind(γ, a) = ind(γ, b) = θ(1)− θ(0)
2π = 0

as expected. �

Simply Connected Sets

Definition – Simply/Multiply Connected Set & Holes.� Let Ω be an open
subset of the plane. A hole of Ω is a bounded component of its complement
C \ Ω. The set Ω is simply connected if it has no hole (if every component of its
complement is unbounded) and multiply connected otherwise.

Examples.

1. The open set Ω = {(x, y) ∈ R2 | x < −1 or x > 1} is not connected but
it is simply connected: its complement has a unique component which is
unbounded, hence it has no holes.

2. The open set Ω = C \ {2−n |n ∈ N} is multiply connected: its holes are
exactly the singletons of its complement.

Intuitively, we should be able to circle around any hole of Ω without leaving the
set; this idea leads to an alternate characterization of simply connected sets.

Theorem – Simply Connected Sets & The Winding Number. An open
subset Ω of the complex plane is simply connected if and only if the interior of
any closed path γ of Ω is included in Ω:

∀ z ∈ C \ γ([0, 1]), ind(γ, z) 6= 0 ⇒ z ∈ Ω,

or equivalently, if the complement of Ω is included in the exterior of γ:

∀ z ∈ C \ Ω, ind(γ, z) = 0.

Examples.

1. If γ is a closed path of Ω = {(x, y) ∈ R2 | x < −1 or x > 1} and z ∈ C\Ω,
since C \ Ω is connected and unbounded, z belongs to an unbounded
component of C \ γ([0, 1]). Thus ind(γ, z) = 0 for any z ∈ C \ Ω.

2. The open set Ω = C \ {2−n |n ∈ N} is open and multiply connected: for
example γ = 1 + 1/4[	] is a path of Ω, z = 1 is a point of C \ Ω and
ind(γ, 1) = 1.
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Remark. Note that we may not always be able to encircle only one hole at
a time. For example, in the case of the set Ω = C \ {2−n |n ∈ N}, we can
find a closed path γ of C \ Ω such that ind(γ, 0) = 1, but then we also have
ind(γ, 2−n) = 1 for n large enough: we cannot encircle the hole {0} of Ω unless
we also encircle an infinity of extra holes.

Lemma. The compact set K is a hole of the open set Ω if and only if there is a
compact subset L of C \ Ω such that K ⊂ L and Ω ∪ L is open.

Proof of the Lemma. If the subset L of C \ Ω is compact and Ω ∪ L is open,
then L and C \ (Ω ∪ L) form a partition of C \ Ω into a compact and a closed
set. The distance between them is positive, thus any connected subset of C \ Ω
that contains a point of L is actually included in L and therefore bounded: it is
a hole of Ω.

Conversely, if K is a hole of Ω, then it is a compact set: K is connected, hence
its closure, which is a subset of the closed set C \ Ω, is also connected and a
superset of K; as K is maximal among these sets, K = K. The set K is therefore
closed and bounded, thus is is compact.

Let r > 0 such that K ⊂ D(0, r). The set K is a component of the closed set
A = (C \Ω)∩D(0, r). For any point a ∈ A on the boundary ∂D(0, r) of D(0, r),
there is a cover of A into disjoint open set Ua and Va such that a ∈ Ua and
K ⊂ Va. Now, the boundary ∂D(0, r) is compact, thus there is a finite collection
of points a1, . . . , an such that U = ∪ni=1Ua covers A ∩ ∂D(0, r). The sets U and
V = (∩ni=1Va)∩D(0, r) are disjoints open sets that cover A and K ⊂ V, thus the
set C \Ω is the disjoint union of the compact set L = A \U that contains K and
of the closed set (C \ Ω) \ V . Therefore, the distance between L and C \ (Ω ∪ L)
is positive which means that every point of L is an interior point of Ω∪L. Since
every point of Ω is also an interior point of Ω ∪ L, this set is open. �

Proof – Simply Connected Sets & The Winding Number. Assume that
Ω is simply connected and let γ be a closed path of Ω. Let z ∈ C \ Ω; this point
belongs to an unbounded connected component of C \ Ω and therefore to an
unbounded connected component of C \ γ([0, 1]), thus ind(γ, z) = 0.

Conversely, if Ω is not simply connected, the set C \ Ω has a hole K which is
contained in some compact subset L of C \ Ω such that Ω ∪ L is open. The
distance ε between L and C \ (Ω ∪ L) is positive. Let r < ε/

√
2; Define for any

pair (k, l) of integers the node nk,l = (k+ il)r and Sk,l as the closed square with
vertices nk,l, nk+1,l, nk+1,l+1 and nk,l+1. The (positively) oriented boundary of
the square Sk,l is the polyline

[nk,l → nk+1,l → nk+1,l+1 → nk,l+1 → nk,l]

The collection of squares that intersect L is finite and covers L. Additionally, all
of its squares are included in Ω ∪ L.

For any square S in the cover of L and any interior point a of S if γ is the
oriented boundary of S, then ind(γ, a) = 1. Additionally, ind(µ, a) = 0 for the

6



oriented boundary µ of any other square in the collection. Consequently, if
Γ denotes the collection of oriented line segments that composes the oriented
boundaries of all squares of the cover of L, we have∑

γ∈Γ

1
2π [z 7→ Arg(z − a)]γ = 1.

Now if the line segment γ belongs to Γ and γ([0, 1]) ∩ L 6= ∅, then γ← also
belongs to Γ; if we remove all such pairs from Γ, the resulting collection Γ′ also
satisfies ∑

γ∈Γ′

1
2π [z 7→ Arg(z − a)]γ = 1.

and by construction the image of any γ in Γ′ is included in Ω. The original
collection Γ is balanced: for any square vertice n, the number of line segments
with n as an initial point and with n as a terminal point is the same. The
collection Γ′ has the same property. Consequently, the line segments of Γ′ may
be assembled in a finite sequence of closed paths γ1, . . . , γn and

n∑
k=1

ind(γk, a) = 1.

Every point of L is either an interior point of some square of the collection, or
the limit of such point; anyway, that means that

∀ z ∈ L,
n∑
k=1

ind(γk, z) = 1

and thus that there is at least one path γk such that ind(γk, z) 6= 0. �

A Complex Analytic Approach

If a closed path is rectifiable, we may compute its winding number as a line
integral; to prove this, we need the:

Lemma. Let a ∈ C and γ be a rectifiable path of C \ {a}. For any t ∈ [0, 1],
let γt be the path such that for any s ∈ [0, 1], γt(s) = γ(ts). The function
µ : [0, 1]→ C, defined by

µ(t) =
∫
γt

dz

z − a

satisfies
∃λ ∈ C∗, ∀ t ∈ [0, 1], eµ(t) = λ× (γ(t)− a).

Proof. We only prove the lemma under the assumption that γ is continuously
differentiable; the rectifiable case is a straightforward extension.
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We have for any t ∈ [0, 1]

µ(t) =
∫
γt

dz

z − a
=
∫ 1

0

γ′(ts)× t
γ(ts)− a ds =

∫ t

0

γ′(s)
γ(s)− ads,

hence
µ′(t) = γ′(t)

γ(t)− a
and the derivative of the quotient φ(t) = eµ(t)/(γ(t)− a) satisfies

φ′(t) = µ′(t)φ(t)− γ′(t)
γ(t)− aφ(t) = 0

which yields the result. �

Theorem – The Winding Number as a Line Integral. Let a ∈ C and γ
be a rectifiable path of C \ {a}. Then

[z 7→ Arg(z − a)]γ = Im
(∫

γ

dz

z − a

)
.

If the path γ is closed, then

ind(γ, a) = 1
i2π

∫
γ

dz

z − a
.

Proof. We use the function µ of the previous lemma. Applying the modulus to
both sides of the equation eµ(t) = λ×(γ(t)−a) provides eRe(µ(t)) = |λ|×|γ(t)−a|,
hence

eiIm(µ(t)) = λ

|λ|
γ(t)− a
|γ(t)− a| .

The function t ∈ [0, 1] 7→ Im(µ(t)) is – up to a constant – a continuous choice of
z 7→ Arg (z − a) on γ. Consequently,

[z 7→ Arg (z − a)]γ = Im(µ(1))− Im(µ(0)) = Im(µ(1)),
which is the desired result.

If additionally γ is a closed path, the equations
γ(0) = γ(1) and eRe(µ(t)) = |λ| × |γ(t)− a|

yield eRe(µ(0)) = eRe(µ(1)) and hence Re(µ(1)) = Re(µ(0)) = 0. Thus,

ind(γ, a) = 1
2π Im(µ(1)) = 1

i2πµ(1),

which concludes the proof. �
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