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Definitions

The argument of a non-zero complex number is only defined modulo 27. A
convenient way to describe mathematically this relationship is to associate to
any such number the set of admissible values of its argument:

Definition — The Argument Function. The set-valued (or multi-valued)
function Arg, defined on C* by

Argz:{HeR ‘em:z},
E
is called the argument function.
If we need a classic single-valued function instead, we have for example:

Definition — Principal Value of the Argument. The principal value of the
argument is the unique continuous function

arg: C\R_ - R

such that
arg 1 =0
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which is a choice of the argument on its domain:

Vze C\R_, argz € Arg 2.

Proof (existence and uniqueness). Define arg on C\ R_ — R by:

arctany/x if x>0,
arg(z +iy) = | +7/2 —arctanz/y if y >0,
—m/2 —arctanz/y if y <O.

This definition is non-ambiguous: if x > 0 and y > 0, we have
arctan x/y + arctany/x = 7/2

and a similar equality holds when > 0 and y < 0. As each of the three
expressions used to define arg has an open domain and is continuous, the function
itself is continuous. It is a choice of the argument thanks to the definition of
arctan: for example, if > 0, with 6 = arg(x + iy), we have

sin 0

Y
=tanf =t t ==z
osg — an an(arctany/x) o

hence, as cos@ > 0 and = > 0, there is a A > 0 such that
x + iy = Acos @ + isinf) = Ae®,

This equation yields arg x + iy € Argxz + 4y. The proof for the half-planes y > 0
and y < 0 is similar.

If f is another continuous choice of the argument on C \ R_ such that f(1) =0,
the image of C\ R_ by the difference f — arg is a subset of 277 that contains 0,
and it’s also path-connected as the image of a path-connected set by a continuous
function. Consequently, it is the singleton {0}: f and arg are equal. |

We cannot avoid the introduction of a cut in the complex plane when we search
for a continuous choice of the argument: there is no continuous choice of the
argument on C*. However, for a continuous choice of the argument along a path
of C*, there is no such restriction:

The following theorem is a special case of the path lifting property (in the context
of covering spaces; refer to (Hatcher 2002) for details).

Theorem — Continuous Choice of the Argument. Let ¢ € C and « be a
path of C\ {a}. Let 6y € R be a value of the argument of v(0) — a:

0o € Arg(v(0) —a).

There is a unique continous function 6 : [0, 1] — R such that 6(0) = 6y which is
a choice of z — Arg(z —a) on ~:

Vit e [0,1], 0(t) € Arg(y(t) — a).



Proof. Let (z(t),y(t)) be the cartesian coordinates of () in the system with
origin a and basis (e?%ie?%). As long as z(t) > 0, the function

t — O + arg(z(t) + iy(t))

is a continuous choice of the argument of v(t) — a. Let d be the distance between
a and ([0, 1]) and let n € N such that

[t—s[ <27 = [y(t) —(s)] < d.

The condition z(t) > 0 is ensured for any ¢ in [0,27"]. This construction of a
continuous choice may be iterated locally on every interval k27", (k + 1)27"]
with a new coordinate system to provide a global continuous choice of the
argument on [0, 1].

The uniqueness of a continuous choice is a consequence of the intermediate value
theorem: if we assume that there are two such functions 8; and 6> with the same
initial value 6, as 01(0) — 02(0) = 0, if 61 (¢) — O2(¢) # O for some ¢ € [0, 1], then
either |01 (t) — 02(t)| < 7, or there is a 7 € |0, ¢[ such that 61(7) — 62(7) # 0 and
|01(7) — 02(7)| < 7. In any case, there is a contradiction since all values of the
argument differ of a multiple of 27. |

Definition — Variation of the Argument. Let a € C and v be a path of
C\ {a}. The variation of z — Arg(z — a) on v is defined as

[z — Arg(z —a)], = 6(1) — 6(0)
where 6 is a continous choice of z — Arg(z — a) on 7.

Proof (unambiguous definition). If §; and 6, are two continuous choices of
z — Arg(z — a) on v, for any ¢ € [0, 1], they differ of a multiple of 27. As the
function 6; — 65 is continuous, by the intermediate value theorem, it is constant.
Hence

(61 — 62)(1) = (61 — 62)(0),
and 91(1) — 91(0) = 02(1) — 92(0) ]

Definition — Winding Number / Index. Let a € C and « be a closed path
of C\ {a}. The winding number — or index — of v around a is the integer

. 1
ind(y,a) = %[z — Arg(z — a)),.

Proof — The Winding Number is an Integer. Let 6 be a continuous choice
function of z — Arg(z — a) on ; as the path « is closed, #(0) and 6(1), which
are values of the argument of v(0) — a = v(1) — a, are equal modulo 27, hence
(0(1) — 6(0))/2m is an integer. |

Definition — Path Exterior & Interior. The ezterior and interior of a
closed path  are the subsets of the complex plane defined by

Exty = {z € C\ ~([0,1)) | ind(y, 2) = 0}.



and

Inty = C\ (7([0,1]) U Ext y) = {z € C\ ([0, 1]) [ ind(, 2) # 0}.

Properties

Theorem — The Winding Number is Locally Constant. Let a € C and
v be a closed path of C\ {a}. There is a € > 0 such that, for any b € C and any
closed path 3, if

b—al<e and (V¢ € [0,1], |B(t) - 2(t)] < ©
then f is a path of C\ {b} and
ind(v, a) = ind(, b).

Proof. Let € = d(a,v([0,1]))/2.If |b—a| < e and for any ¢t € [0,1], |y(t)—B(t)| <
€, then clearly b € C\ §([0,1]). Additionally, for any ¢ € [0, 1] there are values
01 of Arg(y(t) — a) and 02 of Arg(B(t) — b) such that |61 — O] < w/2. If we
select some values 607 g of Arg(y(0) — a) and 62 of Arg(5(0) — b) such that
|61,0 — 62,0| < 7/2, then the corresponding continuous choices 67 et 0y satisfy
|61 (t) — 02(t)] < m/2 for any t € [0,1](*). Consequently

0(1) ~61(0) _ 62(1) ~ 6:(0)| _ 1

|1nd(77 a’) - 1nd(ﬁ7 b)| = 27T 27_[_

As both winding numbers are integers, they are equal. |

Corollary — The Winding Number is Constant on Components. Let v
be a closed path. The function

z € C\ v([0,1]) — ind(~, 2)

is constant on each component of C\ v([0,1]). If additionally the component is
unbounded, the value of the winding number is zero.

Proof. The mapping z +— ind(7, z) is locally constant — and hence constant —
on every connected component of C\ ([0, 1]). If a belongs to some unbounded
component of this set, there is a b in the same component such that |b] > r =
maxyeo,1] |7(t)]- It is possible to connect b to any point ¢ such that |c[ = r by a
circular path in C\ v([0, 1]), thus we may assume that b € R_. The function

0:tel0,1] — arg(y(t) —b)

LOtherwise, by the intermediate value theorem, we could find some ¢ € ]0, 1] such that
[01(t) — 62(t)| = 7/2, but then, for every value 01 ; of Arg(y(t) — a) and 02+ of Arg(8(t) —b),
we would have

91,,5 — 92,t =0 (t) ) (t) + 27k
for some k € Z. Therefore, the choice of 01+ and 032 ¢ such that |61 — 02,¢| < m/2 would be
impossible.



is a continuous choice of z — Arg(z — b) along v and it satisfies

71111(7(1:) — b) arctan
Re(v(H) =) = o=

vVt e [0,1], |0(¢)| = arctan <

vl 3

As v is a closed path, 6(0) and (1) — which are equal modulo 27 — are actually

equal and
1) —
ind(y,a) = ind(y,b) = w o
T

as expected. |

Simply Connected Sets

Definition — Simply/Multiply Connected Set & Holes. Let 2 be an open
subset of the plane. A hole of € is a bounded component of its complement
C\ Q. The set Q is simply connected if it has no hole (if every component of its
complement is unbounded) and multiply connected otherwise.

Examples.

1. The open set Q = {(z,y) € R? | x < —1 or z > 1} is not connected but
it is simply connected: its complement has a unique component which is
unbounded, hence it has no holes.

2. The open set @ = C\ {277 |n € N} is multiply connected: its holes are
exactly the singletons of its complement.

Intuitively, we should be able to circle around any hole of Q) without leaving the
set; this idea leads to an alternate characterization of simply connected sets.

Theorem — Simply Connected Sets & The Winding Number. An open
subset €2 of the complex plane is simply connected if and only if the interior of
any closed path v of  is included in €:

Vze C\~(0,1]), ind(y,2) #0 = 2 € Q,
or equivalently, if the complement of €2 is included in the exterior of ~:

VzeC\Q, ind(y,z) =0.

Examples.

1. If v is a closed path of 2 = {(z,y) € R? |z < —1 or > 1} and z € C\ Q,
since C\ Q is connected and unbounded, z belongs to an unbounded
component of C\ ([0, 1]). Thus ind(~, z) = 0 for any z € C\ Q.

2. The open set Q@ = C\ {277 |n € N} is open and multiply connected: for
example v = 1+ 1/4[0] is a path of ©, z = 1 is a point of C\  and
ind(y,1) = 1.



Remark. Note that we may not always be able to encircle only one hole at
a time. For example, in the case of the set & = C\ {277 |n € N}, we can
find a closed path v of C\ Q such that ind(vy,0) = 1, but then we also have
ind(y,27™) = 1 for n large enough: we cannot encircle the hole {0} of © unless
we also encircle an infinity of extra holes.

Lemma. The compact set K is a hole of the open set € if and only if there is a
compact subset L of C\ Q such that K C L and QU L is open.

Proof of the Lemma. If the subset L of C\  is compact and Q U L is open,
then L and C\ (2U L) form a partition of C\  into a compact and a closed
set. The distance between them is positive, thus any connected subset of C \ ©

that contains a point of L is actually included in L and therefore bounded: it is
a hole of €.

Conversely, if K is a hole of €, then it is a compact set: K is connected, hence
its closure, which is a subset of the closed set (Ci\ ), is also connected and a

superset of K; as K is maximal among these sets, K = K. The set K is therefore
closed and bounded, thus is is compact.

Let r > 0 such that K C D(0,r). The set K is a component of the closed set
A= (C\Q)ND(0,r). For any point a € A on the boundary 9D(0,r) of D(0,r),
there is a cover of A into disjoint open set U, and V, such that a € U, and
K C V,. Now, the boundary 0D(0, ) is compact, thus there is a finite collection
of points aq, ..., a, such that U = U?_,U, covers AN OD(0,r). The sets U and
V = (N, V,)ND(0,r) are disjoints open sets that cover A and K C V, thus the
set C\  is the disjoint union of the compact set L = A\ U that contains K and
of the closed set (C\ Q) \ V. Therefore, the distance between L and C\ (QU L)
is positive which means that every point of L is an interior point of QU L. Since
every point of €2 is also an interior point of 2 U L, this set is open. |

Proof — Simply Connected Sets & The Winding Number. Assume that
Q is simply connected and let v be a closed path of Q. Let z € C\ ©; this point
belongs to an unbounded connected component of C\ Q and therefore to an
unbounded connected component of C \ ([0, 1]), thus ind(y, z) = 0.

Conversely, if 2 is not simply connected, the set C\ € has a hole K which is
contained in some compact subset L of C\ © such that QU L is open. The
distance € between L and C\ (QU L) is positive. Let r < ¢//2; Define for any
pair (k,1) of integers the node ny; = (k+il)r and Sk, as the closed square with
vertices 1.1, Mg+1,1, Pk+1,0+1 and ny 1. The (positively) oriented boundary of
the square Sy ; is the polyline

[nk,l = Nk41,0 =7 Nk+1,041 — Nk,i+1 — nk,l]

The collection of squares that intersect L is finite and covers L. Additionally, all
of its squares are included in QU L.

For any square S in the cover of L and any interior point a of S if 7 is the
oriented boundary of S, then ind(vy,a) = 1. Additionally, ind(u, a) = 0 for the



oriented boundary p of any other square in the collection. Consequently, if
I" denotes the collection of oriented line segments that composes the oriented
boundaries of all squares of the cover of L, we have

1
Z ﬂ[z — Arg(z —a)]ly = 1.
yel

Now if the line segment 7 belongs to I' and ~([0,1]) N L # &, then v also
belongs to I'; if we remove all such pairs from I, the resulting collection I' also
satisfies

Z %[z — Arg(z —a)l, = 1.

yel”

and by construction the image of any + in I is included in Q. The original
collection I' is balanced: for any square vertice n, the number of line segments
with n as an initial point and with n as a terminal point is the same. The
collection IV has the same property. Consequently, the line segments of IV may
be assembled in a finite sequence of closed paths =1, ..., v, and

Zind(vk,a) =1.
k=1

Every point of L is either an interior point of some square of the collection, or
the limit of such point; anyway, that means that

VzeL, Zind(*yk,z) =1
k=1

and thus that there is at least one path 7 such that ind(yg,2z) # 0. |

A Complex Analytic Approach

If a closed path is rectifiable, we may compute its winding number as a line
integral; to prove this, we need the:

Lemma. Let a € C and v be a rectifiable path of C\ {a}. For any ¢ € [0, 1],
let v, be the path such that for any s € [0,1], 1(s) = ~(¢s). The function

w: [0,1] = C, defined by
0=/ =
g a VTt z—a

I e T, Vtel0,1], e =X x (y(t) —a).

satisfies

Proof. We only prove the lemma under the assumption that «y is continuously
differentiable; the rectifiable case is a straightforward extension.



We have for any ¢ € [0, 1]

hence n
1(4) = B

T

and the derivative of the quotient ¢(t) = e*®) /(vy(t) — a) satisfies
' (t)
&' (t) = 1 (H)op(t) — o(t)=0
(6 = 1 (09(0) — 5o

which yields the result. |

Theorem — The Winding Number as a Line Integral. Let a € C and v
be a rectifiable path of C\ {a}. Then

2 = Arg(z —a)], = Im (A Zdza> .

If the path ~ is closed, then

e
:

i2r ), z—a

Proof. We use the function p of the previous lemma. Applying the modulus to
both sides of the equation e*(*) = \x (y(t)—a) provides eRe(1) = |\| x |y(t)—al,
hence
pim(u(t) _ A (t) —a '
Al [y(2) —al
The function ¢ € [0, 1] — Im(p(t)) is — up to a constant — a continuous choice of
z — Arg (z — a) on 7. Consequently,

[+ Arg (= — )], = Im((1)) — Tm(p(0)) = Im(u(1)),
which is the desired result.
If additionally ~ is a closed path, the equations
7(0) =~(1) and RWO) =X x |y(t) - al
yield efe((0) = eRe((1) and hence Re(u(1)) = Re(u(0)) = 0. Thus,
ind(y, ) = 5 Tm(u(1) = - _p(1),
which concludes the proof. |
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